A volume-ish theorem for the Jones polynomial of alternating knots
نویسندگان
چکیده
The Volume conjecture claims that the hyperbolic Volume of a knot is determined by the colored Jones polynomial. The purpose of this article is to show a Volume-ish theorem for alternating knots in terms of the Jones polynomial, rather than the colored Jones polynomial: The ratio of the Volume and certain sums of coefficients of the Jones polynomial is bounded from above and from below by constants. Furthermore, we give experimental data on the relation of the growths of the hyperbolic volume and the coefficients of the Jones polynomial, both for alternating and non-alternating knots.
منابع مشابه
On the Head and the Tail of the Colored Jones Polynomial
The colored Jones polynomial is a function JK : N −→ Z[t, t] associated with a knot K in 3-space. We will show that for an alternating knot K the absolute values of the first and the last three leading coefficients of JK(n) are independent of n when n is sufficiently large. Computation of sample knots indicates that this should be true for any fixed leading coefficient of the colored Jones poly...
متن کاملKnots Knotes
1. Motivation, basic definitions and questions 3 1.1. Basic definitions 3 1.2. Basic questions 4 1.3. Operations on knots 6 1.4. Alternating knots 7 1.5. Unknotting number 8 1.6. Further examples of knots and links 9 1.7. Methods 11 1.8. A table of the simplest knots and links 12 2. Formal definitions and Reidemeister moves 14 2.1. Knots and equivalence 14 2.2. Projections and diagrams 17 2.3. ...
متن کاملState Models and the Jones Polynomial
IN THIS PAPER I construct a state model for the (original) Jones polynomial [5]. (In [6] a state model was constructed for the Conway polynomial.) As we shall see, this model for the Jones polynomial arises as a normalization of a regular isotopy invariant of unoriented knots and links, called here the bracket polynomial, and denoted 〈K〉 for a link projectionK . The concept of regular isotopy w...
متن کاملOn Some Restrictions to the Values of the Jones Polynomial
We prove a relation in the algebra of the Jones Vassiliev invariants, giving a new restriction to the values of the Jones polynomial on knots, and the non-existence of another family of such relations. We prove, that Jones polynomials of positive knots have non-negative minimal degree and extend this result to k-almost positive knots. We prove that if a positive knot is alternating, then all it...
متن کاملJones Polynomials of Alternating Links
Let Jk(*) = nrtr + • ■ • + asta, r > s, be the Jones polynomial of a knot if in S3. For an alternating knot, it is proved that r — s is bounded by the number of double points in any alternating projection of K. This upper bound is attained by many alternating knots, including 2-bridge knots, and therefore, for these knots, r — s gives the minimum number of double points among all alternating pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004